Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Sci ; 9(3): 663-674, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33245738

RESUMO

Tissue engineering and cell transplantation therapy have become promising therapies for intractable diseases. These approaches require cell separation technology without cell modification. Accordingly, in this study, we developed a novel cell separation method using a thermoresponsive block copolymer brush with an affinity peptide. A block copolymer brush with bottom poly(2-hydroxyethyl methacrylate [HEMA]-co-propargyl acrylate) and top poly(N-isopropylacrylamide-co-HEMA) segments was prepared through two steps of atom transfer radical polymerization. Then, cell affinity peptides were conjugated to the bottom segment of the copolymer brush through a click reaction. Using cRGD as a cell-affinity peptide, enhancement of cell adhesion with rapid adhesion on the copolymer brush was observed at 37 °C, whereas the copolymer brush without cRGD did not exhibit cell adhesion. Temperature-modulated cell adhesion and detachment were performed with a relatively long upper segment because the affinity between peptides and cells was modulated by the swelling and shrinking of the upper thermoresponsive segment. Selective endothelial cell adhesion was performed at 37 °C using GGGREDV as an affinity peptide. Smooth muscle cells and fibroblasts did not adhere to the copolymer brush. Adhered human umbilical vein endothelial cells (HUVECs) were successfully recovered by reducing the temperature to 20 °C. Based on the properties of the copolymer brush, HUVECs could be purified using a mixture of cells simply by changing the temperature. These results demonstrated that the prepared copolymer brush with cell affinity peptides could be a useful cell separation tool because the cells could be separated with specificity and without cell modification using a simple procedure.


Assuntos
Peptídeos , Polímeros , Humanos , Polimerização , Propriedades de Superfície , Temperatura
2.
Biopolymers ; 99(7): 436-47, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23616212

RESUMO

The single-crystal structure of the collagen-like peptide (Pro-Pro-Gly)4 -Hyp-Asp-Gly-(Pro-Pro-Gly)4, was analyzed at 1.02 Å resolution. The overall average helical twist (θ = 49.6°) suggests that this peptide adopts a 7/2 triple-helical structure and that its conformation is very similar to that of (Gly-Pro-Hyp)9, which has the typical repeating sequence in collagen. High-resolution studies on other collagen-like peptides have shown that imino acid-rich sequences preferentially adopt a 7/2 triple-helical structure (θ = 51.4°), whereas imino acid-lean sequences adopt relaxed conformations (θ < 51.4°). The guest Gly-Hyp-Asp sequence in the present peptide, however, has a large helical twist (θ = 61.1°), whereas that of the host Pro-Pro-Gly sequence is small (θ = 46.7°), indicating that the relationship between the helical conformation and the amino acid sequence of such peptides is complex. In the present structure, a strong intermolecular hydrogen bond between two Asp residues on the A and B strands might induce the large helical twist of the guest sequence; this is compensated by a reduced helical twist in the host, so that an overall 7/2-helical symmetry is maintained. The Asp residue in the C strand might interact electrostatically with the N-terminus of an adjacent molecule, causing axial displacement, reminiscent of the D-staggered structure in fibrous collagens.


Assuntos
Conformação Proteica , Estrutura Secundária de Proteína , Sequência de Aminoácidos , Colágeno/química , Peptídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...